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ABSTRACT
Purpose To investigate the effect of OATP1B1 genotype as a
covariate on repaglinide pharmacokinetics and drug-drug interac-
tion (DDIs) risk using a reduced physiologically-based pharmaco-
kinetic (PBPK) model.
Methods Twenty nine mean plasma concentration-time profiles
for SLCO1B1 c.521T>C were used to estimate hepatic uptake
clearance (CLuptake) in different genotype groups applying a pop-
ulation approach in NONMEM v.7.2.
Results Estimated repaglinide CLuptake corresponded to 217 and
113 μL/min/106 cells for SLCO1B1 c.521TT/TC and CC, respec-
tively. A significant effect of OATP1B1 genotype was seen on
CLuptake (48% reduction for CC relative to wild type). Sensitivity
analysis highlighted the impact of CLmet and CLdiff uncertainty on
the CLuptake optimization using plasma data. Propagation of this
uncertainty had a marginal effect on the prediction of repaglinide
OATP1B1-mediated DDI with cyclosporine; however, sensitivity
of the predicted magnitude of repaglinide metabolic DDI was
high. In addition, the reduced PBPKmodel was used to assess the
effect of both CYP2C8*3 and SLCO1B1 c.521T>C on
repaglinide exposure by simulations; power calculations were
performed to guide prospective DDI and pharmacogenetic
studies.

Conclusions The application of reduced PBPKmodel for param-
eter optimization and limitations of this process associated with
the use of plasma rather than tissue profiles are illustrated.
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INTRODUCTION

Physiologically-based pharmacokinetic (PBPK) modeling is
increasingly used as a decision-making tool in different phases
of drug development (1,2). In particular it is becoming impor-
tant for the prediction of enzyme-transporter-mediated phar-
macokinetics and associated complex drug-drug interactions
(DDIs) (3–6). A number of recent studies have integrated
transporter kinetic data (e.g., scaled active uptake clearance
and/or biliary efflux), together with passive permeability
(CLdiff), metabolic clearance (CLmet) and intracellular binding
within the whole body PBPK model framework (4,7–11). In
all these cases, permeability limited principles were applied for
the liver model, either by introducing separate liver tissue and
blood compartments (8) or by subdividing liver into multiple
units of extracellular and intracellular compartments connect-
ed by blood flow (7,9); the kinetics of other organs in the
PBPK model were generally described as perfusion rate
limited.

It is evident that the methods used to generate transporter
in vitro kinetic data vary substantially across studies (6). In some
instances, mechanistic 2- or 3-compartment models including
media, cellular and bile compartments were applied for the
characterization of transporter substrates in vitro (12–18).
These mechanistic in vitro models allowed simultaneous char-
acterization of multiple processes in hepatocytes, generating
parameter estimates compatible for subsequent PBPKmodel-
ing (7,12,15). Alternatively, studies have used metabolic and
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transport kinetic data generated in different in vitro systems
(5,19); scaling of each parameter was done according to the
in vitro system used and integration of these data was per-
formed using permeability liver models.

Direct use of in vitro uptake transporter kinetic data in either
static or PBPK models has resulted in on average 17- to 58-
fold under-prediction of hepatic clearance for the comparable
drug set. This trend was apparent regardless of the cellular
source of in vitro transporter data (plated, in suspension or
sandwich cultured hepatocytes) (6,7,14) and is analogous to
under-prediction reported previously for predominantly me-
tabolized drugs (20). Loss or reduction in OATP activity/
expression due to hepatocyte isolation, cryopreservation, in-
creased culturing time and discrepancy in transporter expres-
sion in hepatocytes relative to the intact tissue (21–25) may all
contribute to differences in the transporter activity and in
some cases large extent of under-prediction observed. To
bridge the gap in transporter in vitro-in vivo extrapolation,
clinical plasma concentration-time data have been increasing-
ly used to optimize active uptake parameters (either CLuptake
or uptake Vmax) in PBPK models (4,5,7–9). The rationale
behind this approach is that the active uptake is a major
contributor to the hepatic clearance of the drugs investigated
and therefore assumed to account for the magnitude of the
under-prediction observed. The optimization process is gen-
erally performed by fixing the remaining model parameters
(e.g., CLmet or CLdiff) and by not accounting for their uncer-
tainty (26).

Repaglinide represents an interesting example of a drug
with a complex disposition scheme considering its active up-
take, relatively high passive diffusion into hepatocytes and
multiple metabolic pathways (15,27). In addition, up to 11-
and 17-fold range in repaglinide Cmax and AUC has been
reported following a standard 0.25 mg dose; this large inter-
individual variability is generally associated with polymor-
phism in the SLCO1B1 gene encoding for the hepatic uptake
transporter OATP1B1 (28). In contrast, CYP2C8*3 polymor-
phism has been reported to either have no significant effect
(29,30) or to moderately (<50%) decrease repaglinide plasma
exposure (28,31). The effect of CYP2C8*3 polymorphism is
difficult to assess clinically in conjunction with altered
OATP1B1 activity. An adequately powered study in terms
of sample size is crucial, in particular considering frequency of
CYP2C8*3 and OATP1B1 521CC. Most of the reported
repaglinide clinical studies so far focus on OATP1B1 poly-
morphism in isolation and often include non-carriers of
CYP2C8*3 allele (32).

Previously, we have successfully applied whole body PBPK
model for the prediction of repaglinide DDI with cyclosporine
(4). In the current study, we have developed a reduced hybrid
repaglinide PBPK model to investigate the effect of
OATP1B1 genotype as a covariate on repaglinide pharma-
cokinetics. Minimal or semi-mechanistic models consider a

reduced number of tissue compartments compared to a
whole-body PBPK model, while keeping a mechanistic de-
scription of metabolism/transporter processes in the organs of
interest (e.g., intestine and liver) (33–35). In this study, clinical
data for the most prevalent OATP1B1 polymorphism,
SLCO1B1 c.521T>C, were used in the population modeling
approach in NONMEM v.7.2 to estimate repaglinide hepatic
intrinsic uptake clearance (CLuptake) in different OATP1B1
genotype groups and perform comparison to the reported
in vitro data (15) for this parameter. The reduced model was
used to simulate repaglinide plasma- and liver profiles in
different SLCO1B1 population groups. In addition, sensitivity
analyses were performed and the impact of applying a range
of fixed CLmet and CLdiff (corresponding to 0.1 to 10-fold of
the original parameter value and in agreement with reported
values for these parameters in the literature) on the CLuptake
optimization was assessed. Subsequently, propagation of the
uncertainty in these parameters on the predictedmagnitude of
repaglinide DDI with either metabolic or inhibitors of hepatic
uptake was investigated. Following model validation, the re-
duced PBPK model was used to predict the impact of the
CYP2C8*3 polymorphism on plasma repaglinide exposure
and DDI risk, by also taking into account SLCO1B1
c.521T>C genotype. Finally, the model was used to perform
power calculations to illustrate the application of mechanistic
modeling to guide the design of prospective clinical studies.

MATERIALS AND METHODS

Repaglinide Clinical Data

Mean concentration-time and individual AUC and Cmax data
were collated for the most prevalent single nucleotide poly-
morphism (SNP) of OATP1B1, SLCO1B1 c.521T>C
(rs4149056). For another main OATP1B1 SNP (SLCO1B1
c.388A>G, rs2306283) information in the literature was in-
sufficient for inclusion in the current analysis. All repaglinide
concentration data were extracted from reported clinical stud-
ies using GetData Graph Digitizer 2.24. The available data
consisted of mean profiles of wild type populations (TT),
heterozygous (TC) and homozygous (CC) as well as popula-
tions where the SLCO1B1 genotype was not established (here-
after referred to as MIX). The latter is anticipated to behave
similar to the TT or TC populations given the large preva-
lence of the wild type in the Caucasian population (36) which
was the ethnicity investigated in all clinical studies collated. In
total, 29 mean plasma concentration-time profiles were con-
sidered in this analysis (TT, n=9, TC, n=3, CC, n=7 and
MIX, n=10) with 339 concentration time points at
repaglinide doses ranging from 0.25 to 2 mg. Complete data
with corresponding references are listed in the Supplementary
Material (Tables I and II); dose-normalized data (to a
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s tandard dose o f 0 .25 mg) are presen ted in
Supplementary Material Figure 1 and 2.

Repaglinide Empirical Model

In an initial analysis, an empirical 2-compartmental oral
model with first order absorption and lag time implemented
in NONMEM v.7.2 using ADVAN4 TRANS4 was found
sufficient to describe the oral concentration-time profiles of
repaglinide. Optimization was performed using first-order
conditional estimation method with interaction (FOCE
INTER) and log-transformed data. As data represent mean
concentration-time profiles, inter-individual variability values
(η) estimated in this case refer to between-study variability.
Estimated parameters were: CL/F, ka, Vc/F, Q/F, Vp/F, tlag,
and σadd and between study variability on individual param-
eters, ηCL/F, ηka, ηVc/F, ηVp/F, ηQ/F and ηtlag. Data were
investigated for the effects of OATP1B1 genotype on any of
the following parameters: CL, Vc, Q and Vp.

The parameter estimates obtained using the empirical
model for CL/F, ka, Vc/F, Q/F, Vp/F, tlag, and σadd were
53.4±1.85 L/h, 1.92±0.127 h−1,11.8±1.11 L, 27.3±
2.08 L/h, 35.9±1.88 L, 0.218±0.002 h and 0.0691±
0.0065, respectively. The additive error on the log-
transformed data approximately translates to a 6.91% pro-
portional error on linear scale. Model was stable, as the data
obtained by bootstrap analysis (n=1000) were practically
identical to the NONMEM estimates. Covariates were in-
cluded for all parameters apparent on F; additional covariate
was considered for CL. Due to differences in bioavailability,
521CC carriers (reduced OATP1B1 activity) had 31.0±
7.79% lower estimates of Vc/F, Q/F, Vp/F and 48.0±
13.0% lower estimates of CL/F. As expected, the inter-
individual variability was low (here inter-study variabil-
ity) ranging from 10% for tlag to 24% for Vp/F.
Shrinkage was generally low (<20%) with the exception
of ka where shrinkage was 36%. Detailed results, includ-
ing standard goodness of the fit plots, are provided in
the Supplementary Material (Table III, Figs. 3, 4 and
5). The empirical model served as a reference model to
the reduced PBPK model.

Repaglinide Reduced PBPK Model

A semi-mechanistic pharmacokinetic model of repaglinide
was developed including central and peripheral compart-
ment, with a mechanistic description of metabolism/
transporter processes in the liver compartment (Fig. 1). The
liver represented the only site of elimination for repaglinide. A
total of five ordinary differential equations were implemented,
1, representing absorption site (Abs); 2, liver blood (LB); 3,
liver tissue (LT); 4, central (c) and 5, peripheral compartment
(p), as illustrated in Eqs. 1, 2, 3, 4 and 5. The complete code

for model NONMEM implementation is provided in the
Supplementary Material.

dAAbs

dt
¼ −ka⋅AAbs ð1Þ

V LB⋅
dCLB

dt
¼ ka⋅ FG⋅ AAbs þ Q H ⋅ Cc−CLBð Þ
þCLdiff ⋅SF⋅ f uL⋅CLT− f uB⋅CLBð Þ−CLuptake⋅SF⋅ f uB⋅CLB

ð2Þ

V LT ⋅
dCLT

dt
¼ CLdiff ⋅ SF ⋅ f uB⋅CLB− f uL⋅CLTð Þ
þCLuptake⋅SF ⋅ f uB⋅CLB−CLmet⋅SF ⋅ f uL⋅CLT

ð3Þ

V c⋅
dCc

dt
¼ Q H ⋅ CLB−Ccð Þ þ Q ⋅ Cp−Cc

� � ð4Þ

V p⋅
dCp

dt
¼ Q ⋅ Cc−Cp

� � ð5Þ

where A, C, V refer to amounts (μg), concentrations (μg/L),
and volumes (L), Q, CL, ka, FG, fu, SF refer to inter-
compartmental clearance (L/h), intrinsic clearance (L/h), ab-
sorption rate constant (h−1), fraction escaping intestinal first-
pass, unbound fraction and scaling factor, respectively. The
indices Abs, H, L, c, LB, LT, p, B, diff and met refer to
absorption, hepatic, liver, central, liver blood, liver tissue,
peripheral, blood, diffusion and metabolism, respectively;
SF, refers to the physiological scaling factors (i.e.,
hepatocellularity, microsomal recovery and liver weight, as
detailed in the text below)

Within this model, a set of parameters were fixed to in vivo
or in vitro parameters as shown in Fig. 1; a list of all fixed
parameters is provided in Table I. All remaining parameters
were estimated within NONMEM using ADVAN13 TRAN
S1 (numerical solution of the set of ordinary differential equa-
tions) and the first-order conditional estimation method with
interaction (FOCE INTER). Metabolism of repaglinide in the
liver and subsequent biliary excretion of its metabolites rep-
resent the main route of elimination considering that total
urinary excretion of repaglinide was <0.1% and of
repaglinide metabolites <10% of an oral dose. Repaglinide
M2 was reported to be the major metabolite excreted in urine
and feces accounting for 66% of the total recovered dose (37).
Availability of plasma concentration-time profiles for
repaglinide metabolites is currently limited; data are often
presented in arbitrary units, in particular for the main
CYP2C8 metabolite M4 (38,39). In addition, metabolite data
in individuals associated with either OATP1B1 or CYP2C8
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polymorphisms have not been reported and metabolites were
therefore not considered in the current analysis. In addition,
efflux transporters responsible for the excretion of repaglinide
metabolites and any potential contribution of basolateral ef-
flux of metabolites into blood and their distribution charac-
teristics are currently unknown.

Previously reported repaglinide passive diffusion clearance
(CLdiff) in plated human hepatocytes (mean value of 3 donors,
(15)) was used as input parameter in the reduced model.
Repaglinide metabolic clearance (CLmet) values reported in
the literature were obtained either in human hepatocytes (27)
or in human liver microsomes (40). Microsomal depletion
CLmet was 6.8-fold higher than estimates from the hepatocytes
based on the metabolite formation and this difference was
reflected in the scaled CLmet (435 L/h vs. 64.2 L/h for micro-
somal and hepatocyte data, respectively). In vitro-in vivo extrap-
olation of the CLdiff and CLmet was performed using corre-
sponding scaling factors, i.e., either hepatocellularity (120×
106 cell/g liver) or microsomal recovery (40 mg/g liver). Final
parameter estimates were obtained using the log-transformed
data. Estimated parameters were: CLuptake, ka, Vc, Q, Vp, tlag,
and σadd and between study variability on individual param-
eters: ηCLuptake, ηka, ηVc, ηVp, ηQ and ηtlag. Bootstrap analysis
was performed on n=200 for the reduced PBPK model. The
performance of the model was assessed by visual predictive
checks obtained in Matlab v.7.12 (The MathWorks® Inc.) on
a number of 2,500 simulated individuals using a normal
distribution of the between-study variability; random unex-
plained variability (σ) was included on each simulated
concentration. Typical goodness of fit plots such as

observations versus population (DV vs. PRED) or individual
predictions (DV vs. IPRED) conditionally weighted resid-
uals versus time (CWRES vs. TIME) and population pre-
dictions (CWRES vs. PRED) were used to detect any
misspecifications in the structural model.

An identifiability analysis of the reduced PBPK model was
performed using Differential Algebra for Identifiability of
Systems software (DAISY) described elsewhere (41). The
structural model was globally identifiable when the parame-
ters CLuptake, ka, Vc, Q and Vp were estimated.

Absorption 
site ka, tlag

Q

QH, B:P, fup

Liver tissue

VL, fuT

Vc

Vp

Liver blood
CLuptake

CLdiff

CLmet
FG VLB

Fig. 1 Repaglinide hybrid PBPKmodel. The fixed parameters in the model are shown in black, whereas parameters estimated by the model are in red. Details of
parameters inputs and model equations are highlighted in the Methods.

Table I Summary of the Parameter Values Utilized in the Semi-Mechanistic
PBPK Model

Parameter Value Type of data Source

VH (L) 1.6 System (54)

QH (L/h) 92.7 System (54)

FG 0.89 In vivo (42,43)

fup (%) 2.6 In vitro (55)

fuT (%) 7.2 In vitro (14)

B:P 0.62 In vitro (55)

CLdiff (L/h) 129a In vitro; plated hepatocytes
(n=3 hepatocytes donors)

(15)

CLmet (L/h) 64.2a In vitro; hepatocytes
(formation, pool of 20)

(27)

435a In vitro; microsomes (depletion,
n=3 pools, >100 donors)

(40)

a Represent the parameter values scaled using hepatocellularity or microsomal
recovery
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Investigation of the Effect of OATP1B1 Genotype
as a Covariate

The effect of OATP1B1 genotypes on all parameters was
assessed using statistical tests (one-way ANOVA tests) on the
individual empirical Bayes estimates. Further, log-likelihood
ratio tests at a significance level of p<0.01 were performed
when significant differences were found on the individual
estimates. No other covariates were investigated as the aver-
age age and weight were very similar across subjects in orig-
inal clinical studies and additional covariate information was
not reported.

Monte Carlo Simulations

In order to assess the ability of the model to recover the
reported inter-individual variability of the repaglinide AUC
and Cmax, Monte Carlo simulations were performed as de-
tailed above. A summary of the observed individual
repaglinide AUC and Cmax is provided in Table II and
simulations were compared to the collated clinical observa-
tions. For the hepatic uptake clearance, true inter-individual
variability was approximated from oral in vivo AUC data (26.2
and 35.4% for all remaining genotype groups and CC group,
respectively, Table II). This approximation is correct under
two assumptions: i) CLdiff<<CLmet and CLuptake, and ii)
repaglinide oral clearance is a function of hepatic activity
alone. The latter is a reasonable assumption, as the extent of
intestinal metabolism is minor for repaglinide, with an aver-
age FG of 0.89 (42,43). In the case of other parameters,
between study variability obtained during the NONMEM
optimization were used as surrogates for the true between
subject variability. Neither QH nor fup were varied in the
Monte Carlo assessment as their impact is already included
in the terms Vc, Vp and CLuptake for fup and CLuptake for QH

given the model structure.

Sensitivity Analysis

It is possible that fixing some of the model parameters may
introduce a bias in the estimation of the unknown parameters
and/or their variability. Certain parameters were known with
fairly high confidence and fixing them has consequently intro-
duced negligible bias. For the physiological parameters (QH

and VL) and the other drug related parameters (FG, B:P, fup
and fuL) average values sourced from the literature were
considered appropriate estimates as i) the data utilized during
the optimization represented mean concentration-time pro-
files and ii) clinical data were obtained in a highly homoge-
neous population with respect to age and weight
(Supplementary Material Table I). In contrast, model sensi-
tivity on the in vitro parameters CLdiff and CLmet was assessed
as both parameters are associated with considerable

uncertainty given the experimental procedures by which they
are determined and a wide range of values reported in the
literature (7,15,27,40). Consequently, NONMEM optimiza-
tions were performed as detailed above by varying fixed values
of CLmet and CLdiff from 0.1, 0.5, 1, 2 to 10-fold of the
original value resulting in a total of 25 permutations. The
estimated CLuptake values in each of the scenario were com-
pared to the reported in vitro value (15) and corresponding
empirical scaling factors for hepatic intrinsic uptake clearance
were determined as ESFuptake=CLuptake,in vivo/CLuptake, in vitro.

Liver Kp (liver-to-plasma concentration ratio) estimates
were calculated from the AUC∞ of the liver tissue relative to
the AUC∞ of the effluent liver plasma (44). For repaglinide,
which is not excreted into the bile, the KpL and Kpuu values at
steady-state are defined by Eqs. 6 and 7, respectively.

K pL ¼ AUCLT

AUCLB=BP
¼ CLuptake þ CLdiff

CLdiff þ CLmet
:
f up
f uT

ð6Þ

K puu ¼
CLuptake þ CLdiff

CLdiff þ CLmet
ð7Þ

Impact of Parameter Uncertainty on the Prediction
of DDI Risk

The uncertainty in the in vitro parameter estimates of CLmet

and CLdiff on the CLuptake optimization was further propagat-
ed into the simulation of the DDI risk. The reduced PBPK
model was used to predict the fold-change in repaglinide
AUC in the presence of hepatic uptake or metabolic inhibitor
and the propensity of introducing a bias in theDDI assessment
due to uncertainty in these parameter estimates was assessed.
Cyclosporine was selected as an example of a potent inhibitor
of active uptake and the magnitude of DDI was investigated
using a simulated concentration-time profile of the inhibitor
after 100 mg and 300 mg doses of cyclosporine Neoral® using

Table II Individual Repaglinide AUC and Cmax Data (Normalized to an Oral
Dose of 0.25 mg) in Different SLCO1B1 Genotype Populations; Values in
Parentheses Refer to the Number of Individuals

SLCO1B1 c.521T>C AUC (ng.h/mL) %CV Cmax (ng/mL) %CV

TT 4.68 (87)a 25.8 3.85 (43) 30.9

TC 4.87 (12)a 27.6 n/a n/a

CC 8.10 (34) 35.4 6.24 (29) 29.0

MIX 4.10 (63)b 56.1b 5.47 (20)b 45.4b

a Average value and %CV of TT+TC carriers are 4.75 (26.2)
b Inflated values and variability anticipated as population is heterogeneous

Repaglinide Reduced PBPK Model and Parameter Optimization 2371



previously developed cyclosporine PBPKmodel (4). The DDI
predictions were performed assuming reversible inhibition of
OATP1B1 mediated uptake of repaglinide by cyclosporine
and utilizing the inhibitor plasma concentration time profile
to generate a dynamic change in the hepatic uptake clearance,
Eq. 8. The inhibitory potency of cyclosporine Ki=0.019 μM
reported previously (4) was determined in HEK-OATP1B1
following a 30 min pre-incubation step. Complete inhibition
of intestinal metabolism was assumed in the presence of cy-
closporine, i.e., repaglinide FG=1 under these conditions;
rationale supported by previous studies (4,42).

CLuptake tð Þ ¼ CLuptake⋅ 1þ CsA½ �t
K i

� �
ð8Þ

In addition to the inhibition of active uptake, sensitivity
analysis investigated the impact of parameter uncertainty on
the prediction of metabolic DDI. In this analysis, complete
reduction of metabolic intrinsic clearance was investigated
assuming either 50% or 90% contribution of the inhibited
pathway (e.g., for CYP2C8), as reported previously for
repaglinide (27,38). For the metabolic interaction a constant
reduction of CLmet was assumed, mimicking the behavior of
an irreversible inhibitor. This assumption is correct when the
degradation rate constant of the enzyme is << terminal elim-
ination rate constant of repaglinide, which is appropriate, as
repaglinide elimination half life in control conditions is
~1.5 h and considerably shorter than the typical degra-
dation half life of metabolic enzymes (e.g., 23 h report-
ed for CYP2C8, (45)). All simulations were performed
in Matlab v.7.12 using the semi-mechanistic model spec-
ified in Eqs. 1–5 and the stiff ordinary differential
equation solver ODE15s.

Assessment of CYP2C8 Polymorphism on Repaglinide
Plasma Exposure by Simulations

In order to predict the effect of CYP2C8*3 polymorphism on
repaglinide plasma exposure, the developed reduced PBPK
model was used to simulate virtual individuals, as detailed in
the “Monte Carlo Simulations” section. Limited evidence
from both clinical (28,31) and in vitro (46) observations indicate
that this polymorphism increases the metabolic CYP2C8
activity towards repaglinide. However, assessment of the in-
terplay between CYP2C8 and OATP1B1 and effects of their
respective SNPs has not been reported in the same individual.
In order to assess the effect of combinations of these covari-
ates, different scenarios with regards to the increase in
repaglinide CLmet were investigated in the simulations: 1 (no
increase), 1.2, 1.3, 1.5, 2, 3, 5, 10, 20 and 100-fold of the
original value. In all scenarios investigated, absence of a
SLCO1B1 c.521T>C genotype that alters OATP1B1 activity

(CC) was assumed. For every scenario, 1,000 individuals were
simulated in order to obtain an accurate prediction of the
mean AUC and the related variability. In addition, all
CYP2C8*3 polymorphism scenarios outlined above were in-
vestigated in individuals with reduced OATP1B1 activity
using the covariate effect identified in the model with respect
to the SLCO1B1 c.521CC genotype. Finally, the case where
another CYP2C8 polymorphism or a potential DDI is de-
creasing rather than increasing repaglinide CLmet was assessed
by investigating the following scenarios: 1 (no decrease in
CLmet), 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 and 0.05-fold of
the original CLmet value. As above, this procedure was per-
formed for both subjects with normal and reducedOATP1B1
activity.

Statistical Power to Identify the Effect of CYP2C8
Polymorphism or its Inhibition on Repaglinide Plasma
Exposure

The reduced PBPK model was used to inform power calcu-
lations and estimate the sample size needed to identify the
effects of CYP2C8*3 polymorphism on repaglinide plasma
exposure. The power calculations were performed by simula-
tion as explained below: Increasing sample sizes were evalu-
ated, assuming that in these populations the frequency of the
rare genotype that alters repaglinide AUC is 0.14 (approxi-
mate allelic frequency of CYP2C8*3 (47,48)). This fraction of
the population (referring to the CYP2C8*1/*3 genotype) was
simulated with the developed model using an increased value
of CLmet and all the potential scenarios mentioned in the
previous section were assessed. In order to account for the
variability introduced from the SLCO1B1 genotype, the virtu-
al individuals in both the wild type and the variant CYP2C8
group were simulated with a 1.5% probability of being ho-
mozygous variant for the c.521T>C polymorphism (the
approximate genotype CC frequency in a global popu-
lation is around 0.015). A two sample t-test assuming
equal variance and normality of the observations was
performed between the plasma exposure in virtual indi-
viduals with the wild type and the variant CYP2C8
genotype. This statistical test was evaluated (5,000 times)
in 5,000 simulated virtual populations of this sample
size and the statistical power was calculated as the
fraction of the tests in which the null hypothesis of no
genotype effect was rejected (p<0.05). This procedure
was repeated for every sample size step. In addition, the
above power calculation procedure was repeated for the
case where another CYP2C8 polymorphism or a poten-
tial DDI is decreasing repaglinide CLmet; all the poten-
tial scenarios mentioned in the previous section were
investigated, assuming in this case equal allocation of
subjects between the two studied groups.
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RESULTS

In the current study, 29 datasets of repaglinide clinical data
reported for the most prevalent OATP1B1 polymorphism
(SLCO1B1 c.521T>C) were used in the population modeling
approach to estimate repaglinide CLuptake in different
OATP1B1 genotype groups. Repaglinide plasma
concentration-time profiles were well defined by the reduced
PBPK model outlined in Fig. 1. Figure 2 illustrates the com-
bined observed repaglinide plasma data (normalized to an
oral dose of 0.25 mg) and the predicted concentration time
profiles (median and 90% prediction intervals) in two geno-
type groups, 521TT, TC and MIX (hereafter referred to as
group 1) and 521CC (group 2). The typical Cmax and AUC
values were 3.8 and 5.6 ng/mL and 4.74 and 8.66 ng.h/mL
for groups 1 and 2, respectively. The individual and popula-
tion fits for each of the 29 datasets used in the analysis are
provided in the Supplementary Material Figure 6.

The parameter estimates obtained by the reduced
repaglinide PBPK model are summarized in Table III. The
typical goodness of fit plots are shown in Fig. 3; no bias was
apparent in the fit with respect to time and predicted individ-
ual or population concentrations, nor was any bias observed
due to the selected residual error model. The estimated
repaglinide lag time (0.215 h) and absorption rate constant
(1.90 h−1) were consistent with the values obtained in the
initial analysis by the empirical model (Supplementary
Material Table III). The volume of distribution in blood was
34.2 L, equivalent to 21.9 L in plasma. Differences between
the empirical and the semi-mechanistic model predictions of
oral plasma concentration-time profiles were less than 3% at
any given concentration when using the typical parameter
values. Use of a higher microsomal CLmet value as a fixed
parameter in the model resulted in estimated in vivo CLuptake
values corresponding to 217 and 113 μL/min/106 cells for
SLCO1B1 genotype group 1 and 2, respectively (Table III).
Depending on the OATP1B1 genotype group (normal
521TT or reduced transporter activity, 521CC), these in vivo
estimates are 2.3- to 4.4-fold higher than the in vitro CLuptake
value reported previously in human hepatocytes (49 μL/min/
106 cells, (15)). This discrepancy is more pronounced if a lower
CLmet value (27) is considered as a model input, resulting in
5.5- to 10.4-fold under-estimation of CLuptake for OATP1B1
genotype group 1 and 2, respectively. The genotypes of the
hepatocyte donors utilized in the in vitro work (15) were unde-
fined and the current analysis assumed that only OATP1B1
transporter is involved in the hepatic disposition of
repaglinide.

Unlike the empirical model which identified a covariate
effect of OATP1B1 genotype on F and CL (Supplementary
Material Table III), the reduced PBPK model only identified
an effect of the covariate on the CLuptake. In the mechanistic
model, the parameters Vc, Q and Vp represent the true

parameter estimates as bioavailability is explicit within themodel
and consequently the estimated volume of distribution compared
well with the observed data after i.v. administration (49). A
significant difference (p<0.01) in CLuptake was apparent for
homozygous carriers of 521CC in comparison to 521TT, TC
and MIX. While the sample size of TC was too small (n=3) to
rule out genotype specific effects, no differences in repaglinide
AUC values have been reported so far on an individual level for
TC carriers vs. wild type (TT) (28). Differences in hepatic uptake
clearance were considerable, with the 521CC group displaying a
48% reduction in CLuptake compared to the other groups. This
trend was also apparent when the empirical model was applied,
with a 48% reduction in CL/F in OATP1B1 CC carriers
relative to the wild type.

Monte Carlo Simulations

Figure 4 illustrates the success of the semi-mechanistic model
to recover the inter-individual variability of oral repaglinide
PK parameters, AUC and Cmax, in different OATP1B1 ge-
notype groups. Reported repaglinide AUC data were com-
piled from up to 87 individuals depending on the OATP1B1
genotype group. For an oral dose of 0.25 mg the average
AUC of the 521TT, TC, CC andMIX populations were 4.68
(n=87, CV=26%), 5.27 (n=12, 28%), 8.10 (n=34, 35%) and
4.10 (n=63, 56%) ng.h/mL, respectively; a significant differ-
ence was apparent between the 521CC group and all others
(p<0.01 one-way ANOVA test). In general, the semi-
physiological model was successful in defining the between-
subject variability assessed on AUC for TT/TC and CC:
predicted AUC and %CV were 4.83 (25%) and 8.91 (35%),
respectively. The model was less predictive of the between-
subject variability in Cmax (given the lack of true inter-
individual variability of the parameters Vc, Q, Vp, ka and tlag):
for groups 1 and 2 the predicted and observed %CV on Cmax

were 22 vs. 31 and 24 vs. 29%, respectively.

Sensitivity Analysis: Impact of Parameter Uncertainty
of CLdiff and CLmet on the CLuptake Estimates

CLmet and CLdiff were fixed parameters in the semi-
mechanistic model; however, these parameters are associated
with a large experimental uncertainty. Consequently, a sensi-
tivity analysis was performed in which these values were varied
in the range of 0.1- to 10-fold of their original values resulting
in 25 possible combinations. For each set of fixed parameter
values, a NONMEM optimization was performed utilizing
the same dataset as detailed above. Comparison of required
empirical scaling factors for CLuptake (ESFuptake) relative to
CLmet and CLdiff used is illustrated in Fig. 5; the combination
1×:1× for CLmet and CLdiff represents the solution of the
model detailed here. Based on the goodness of fit criteria,
the oral repaglinide plasma concentration-time data for each
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of the 25 combinations were equally well described (albeit not
identically, as plasma C-t profiles are to some extent affected
by the liver concentration as CLdiff represents a bidirectional
process) and the objective function values were comparable
(with one exception, see footnote of Table IV). It is evident
that the surface of the sensitivity analysis plot is relatively flat
when only a 2-fold range in CLmet and CLdiff values is con-
sidered. Within this range, the error introduced into the
estimation of the uptake empirical scaling factor is reasonably
small, resulting in comparable estimates of in vivo CLuptake, as
shown in Table IV. However, at the extreme cases, i.e., when
either the true CLdiff value is 10-fold higher than the typical
in vitro data or when the true CLmet value is 10-fold less than
the typical in vitro value, the estimate of the empirical scaling
factor for CLuptake becomes sensitive to the values of CLdiff
and CLmet. Consequently, the largest extent of under-
estimation of CLuptake (ESFuptake>50-fold) can be seen when,
at the same time, the metabolic intrinsic clearance is low and
the passive diffusion clearance is high (combination of
10×:0.1×). It should be noted that although the impact on
repaglinide plasma concentrations is marginal across scenari-
os, liver concentrations are affected considerably depending
on the choice of the input parameters.

Local Tissue Concentrations

The semi-mechanistic model further allowed an estimation of
repaglinide accumulation ratio in the liver tissue (effective or
pseudo KpL values) by taking into account all different
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Fig. 2 (a) Semi-logarithmic observed and predicted plasma concentration-time profiles of repaglinide for a typical single oral dose of 0.25 mg using a reduced
PBPKmodel stratified for OATP1B1 genotype; (b) shows the linear representation of the data up to 1.5 h; the solid and dashed lines represent the median and 5th
and 95th percentiles of 2,500 simulations using defined parameters and between-study variability, the open circles represent the observed data (normalized to an
oral dose of 0.25 mg).

Table III Results of the Optimization Performed in NONMEM Using
Developed Reduced PBPK Model

Parameters Mean SE (%)

OFV −1137.540

CLuptake,TT
a,b (μL/min/106 cells) 217(216) 4.3

CLuptake,CC
a,b (μL/min/106 cells) 113 (114) 5.3

ka (h
−1) 1.90 (1.92) 7.7

Vc (L) 8.49 (8.63) 12.0

Q (L/h) 20.7 (21.0) 8.7

Vp (L) 27.3 (27.4) 4.10

tlag (h) 0.215 (0.215) 1.2

σ (%)c 6.91 (6.84) 9.8

ηCL (%) 17.3 (16.8) 31.1

ηka (%) 7.30 (7.10) 127

ηVc (%) 15.5 (17.5) 53.1

ηQ (%) 22.4 (22.4) 31.9

ηVp (%) 21.2 (20.8) 27.6

ηtlag (%) 5.86 (5.10) 47.7

Values in parenthesis and SE estimates were obtained by bootstrap analysis
(n=250). The Vc, Q and Vp refer to blood parameters
a Corresponds to CLuptake values of 501 and 261 L/h for TT/TC and CC,
respectively. The reference CLuptake obtained in vitro is 49 μL/min/106 cells,
i.e., 113 L/h (15)
b Use of CLmet reported in (27) resulted in estimated CLuptake of 508 and
271 μL/min/106 cells for TTand CC, respectively and OFV of −1082.355.
Other parameter estimates were comparable to the values listed above
cσ represents the additive error of the log-transformed data which approx-
imately translates to a proportional error of the linear scale data
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mechanisms. In contrast to the plasma concentration-time pro-
files (and AUC), the liver concentration-time profiles were highly
sensitive to changes in CLmet, CLdiff and CLuptake. Within the
setup of the sensitivity analysis, the effective KpL values ranged
from 0.15 to 15 (Kpuu=0.42–42) depending on the combina-
tions of CLmet, CLdiff and CLuptake. The effective KpL values
were the highest for those sets of parameter estimates where
CLuptake was large compared to CLmet; this effect was further
amplified by a low CLdiff (see Eq. 7). For the solution of the
model described here in detail (i.e., combination 1×:1× for
CLmet and CLdiff) the liver AUC was 1.5-fold higher than the
hepatic outlet AUC; the corresponding Kpuu was 4.2.

Sensitivity Analysis: Impact of Parameter Uncertainty
on DDI Predictions

The impact of utilizing different sets of fixed parameters was
investigated to answer the question whether an uncertainty in

the in vitro values of CLmet and CLdiff also propagates into the
assessment of DDI risk. Simulations were performed using the
solutions of the 25 cases (as shown in Fig. 5a) and the fold-
change in repaglinide AUC in the presence of cyclosporine
(OATP1B1 inhibitor) was investigated (Fig. 5b). Further, the
impact of a constant and complete reduction of metabolic
intrinsic clearance (as may be caused by an irreversible inhib-
itor) was investigated assuming fmCYP values of the inhibited
pathway of 50 and 90%. It is apparent from Fig. 5b that the
change in repaglinide plasma AUC is affected to a minor
degree by the final estimates of CLmet, CLdiff and CLuptake
when simulating the interaction with a potent OATP1B1
inhibitor (e.g., cyclosporine). Using a dose of 100 mg (CsA
Neoral®) resulted in a predicted increase in the repaglinide
AUC by 36 to 84% depending on the final estimates of CLmet,
CLdiff and CLuptake. Differences were more apparent for a
300 mg dose of CsA and 2-fold difference in the predicted
effect on repaglinide AUC was evident purely because of
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different combinations of CLmet, CLdiff and CLuptake

(Supplementary Material Figure 7A). The worst case DDI
scenario was predicted when the contribution of the passive
process to the total hepatic uptake was small.

In contrast, the predicted fold-change of repaglinide plas-
ma AUC in the presence of a metabolic inhibitor is highly
affected and any predictive outcome is subject to the uncer-
tainty in the in vitro parameter values of CLmet, CLdiff and
CLuptake (Fig. 5c). It is apparent that as CLdiff increases, the
fold-change of AUC asymptotes the expected extent of inter-
action predicted by the perfusion limited considerations for
liver (i.e., 10-fold increase in AUC when fmCYP=0.90,
Supplementary Material Figure 7B). In contrast, when CLdiff
approaches zero the fold-change in repaglinide AUC practi-
cally reduces to unity. Under these conditions, the passive
diffusion is so small that the net flux of drug from the liver
tissue back into plasma is insufficient to alter the plasma
concentrations to any quantifiable extent. The plasma C-t

profiles are completely controlled by the active uptake process
(CLuptake) and are consequently highly insensitive to CLmet. In
the case of metabolic interactions, liver exposure will change
to a large extent for any drug which is exclusively eliminated
by this organ and for such a drug the change in liver AUC is
inversely related to the reduction in metabolic intrinsic
clearance.

Simulations of the Effect of CYP2C8 Polymorphism
on Repaglinide Plasma Exposure

The effect of CYP2C8*3 allelic variant on repaglinide plasma
exposure was simulated for a wide range of different scenarios
assuming an increase in metabolic clearance in these individ-
uals compared to the CYP2C8 wild type. This analysis was
performed for individuals with normal OATP1B1 activity
(Fig. 6a) and an analogous analysis for the individuals with
reduced OATP1B1 activity (CC for the c.521T>C
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polymorphism) is shown in the Supplementary Material,
Figure 8. Based on the described model, the effect of the
CYP2C8*3 polymorphism on repaglinide plasma exposure
is predicted to be minimal. An up to 100-fold increase in
CLmet translated to an approximate 4 to 23% change in
AUC across the different scenarios investigated. In addition,
AUC reaches a plateau and becomes almost completely in-
sensitive to increase in CLmet beyond a 10-fold change.
Analogous trends with respect to the fractional AUC decrease
in the case of a CYP2C8*3 polymorphism were seen in
subjects with reduced OATP1B1 activity, suggesting that the
relative extent of this polymorphism effect is independent of
the OATP1B1 genotype.

The opposite scenario, i.e., when another polymorphism or
a potential DDI cause a decrease in repaglinide metabolic
clearance is illustrated in Fig. 7a for individuals with normal
OATP1B1 activity (TT). The effect on the subjects who have
reduced OATP1B1 activity (CC) in addition to CYP2C8
polymorphism is shown in the Supplementary Material,
Figure 9. Repaglinide AUC is insensitive (<34% increase) to
moderate decreases (<60%) in repaglinide metabolic clear-
ance. However, the effect on plasma exposure is notable with
pronounced decrease in CLmet, e.g., a 360% increase in AUC
is estimated for a 95% decrease in CLmet.

Power Calculations

The current analysis shows that large sample sizes are re-
quired in order to clinically detect minimal increases (<25%)
in repaglinide exposure associated with the CYP2C8*3 allelic
variant (Fig. 6b). It is evident that the power calculation is not
only sensitive to the sample size but also to the functional effect
of the polymorphism e.g., change in CYP2C8 metabolic
activity. The analysis has shown that the statistical power for
a given sample size is greater for the polymorphism with a
larger magnitude of the effect. When the CYP2C8*3 variant
increases metabolic clearance by 20% (1.2× CLmet scenario
resulting in decrease in AUC by approximately 3.8% due to
the interplay with other processes) and in order to achieve
nominal 80% power, the sample size (variant genotype group)
needed is >80 subjects. The equivalent sample size for the 2×
CLmet (translates to a decrease in AUC by 11.4%) and for the
10× CLmet scenarios (decreases AUC by 21%) are 45 and 13
subjects, respectively.

Similar trends can be observed for the power calculations
for the cases when metabolic clearance is decreased, either
due to another polymorphism or a potential DDI (Fig. 7b).
For the minor change in CLmet (20% decrease, which corre-
sponds to 0.8× CLmet and a 5.6% AUC increase) sample size
of >80 subjects per group is needed in order to achieve
nominal 80% power. However, when the reduction in
CLmet is more pronounced, the sample size required (per
group) to detect the effect on AUC becomes much smaller.
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Fig. 5 (a) Impact of uncertainty in the in vitro parameters CLmet and CLdiff on the
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intrinsic clearance. Assumption of the fmCYP of 90% results in the same trend as
shown in 5c with the difference in the magnitude of change in repaglinide AUC
(see Supplementary Material Figure 7b).
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For example, sample size required for the 0.5× CLmet (in-
creases AUC by 23%) and for the 0.1× CLmet (increases
repaglinide AUC by 190%) scenarios are 27 and 3 subjects,
respectively.

DISCUSSION

In the current study, a hybrid PBPK model was developed
where repaglinide pharmacokinetics were defined by a mech-
anistic liver and empirical distribution model. The reduced or
semi-mechanistic modeling approach has been successfully
used previously for drugs with differential distribution prop-
erties to repaglinide, i.e., to describe nonlinear disposition of
clarithromycin, as well as DDIs at the level of liver and
intestine (34,50). The repaglinide model was applied to esti-
mate hepatic active uptake clearance and assess covariate

effect of SLCO1B1 c.521T>C on its pharmacokinetics and
DDI risk. All reported repaglinide clinical data, together with
consideration of OATP1B1 genotype data, were included in
the analysis, in contrast to previous reports that focused on
data from a single study in the model development (51). The
mechanist ic model successful ly described plasma
concentration-time profiles in different OATP1B1 genotypes
following oral administration of repaglinide (Fig. 2).
Differences between the typical repaglinide plasma concen-
tration time profiles obtained by the empirical 2-
compartmental and the reduced PBPKmodel were marginal.
The reduced model successfully predicted inter-individual
variability in repaglinide AUC associated with different
OATP1B1 genotypes (Fig. 4), whereas between-subject vari-
ability on Cmax was under-estimated. This is not surprising
due to lack of inter-individual variability information on the
parameters Vc, Q, Vp, ka and tlag, as the evaluation of the

Table IV Effect of CLdiff and CLmet on Estimated Repaglinide CLuptake

Fold change in CLdiff Fold change in CLmet

0.1× 0.5× 1× 2× 10×

0.1× 229 125 186 102 181 99.0 178 97.4 176 96.5

0.5× 432a 240a 224 119 197 105 184 98.0 173 92.5

1× 686a 382a 270 141 217 113 190 98.8 169 87.3

2× 1,190a 675a 363 185 257 129 204 100 162 77.2

10× 5,230 2,990 1,100 537 574 254 309 111 99.5 2.60b

Values in bold represent CLuptake,TT/TC estimates (expressed in µL/min/106 cells) and values in italic estimated CLuptake,CC
a Change in other parameters (ka and Vc) observed
b Failure of the optimization to capture the plasma C-t profiles of repaglinide adequately
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Fig. 6 (a) Predicted effect of CYP2C8*3 polymorphism (increase in CLmet) on repaglinide plasma exposure in individuals with normal OATP1B1 activity (TT/TC
for the c.521T>C polymorphism). Each boxplot represents individual AUCs of 1,000 simulated subjects for every scenario regarding the increase in repaglinide
CLmet. The fractional change in mean AUC relative to baseline (×1 the original value of CLmet) is reported. Highlighted in grey is the range where the increase in
metabolic clearance is most probable based on in vitro data associated with the CYP2C8*3 variant. (b) Statistical power to identify the effect of CYP2C8*3
polymorphism on repaglinide plasma AUC in relation to the sample size and functional magnitude of the polymorphism effect. Sample size reported refers to the
rare-variant genotype group (14% of the total study population).
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model was based on reported average plasma profiles. Ability
of themodel to recover the inter-individual variability in AUC
allowed subsequent power calculations based on AUC and
simulation of different scenarios with confidence.

The effects of SLCO1B1 c.521T>C polymorphism on the
repaglinide plasma AUC is well established (28,32) but a
mechanistic PBPK model describing this behavior has not
been developed previously. The current model identified a
typical reduction of 48% in uptake activity for CC carriers
(reduced OATP1B1 activity) relative to the other genotype
groups. Although novel, the current assessment only
accounted for one SNP for OATP1B1 given the available
data in the literature. However, other SNPs in SLCO1B1 gene
(c.388A>G) may also be of importance in conjunction with
additional SNPs of metabolizing enzymes (CYP2C8) (28).
Polymorphisms of either CYP3A5 or P-gp have not been
linked with any significant changes in repaglinide AUC (28),
but a comprehensive covariate analysis of multiple SNPs in
the same individuals is currently lacking in the literature.
Another assumption made by the current model is that the
hepatic active uptake of repaglinide is mediated completely by
OATP1B1 which may not be the case. Emerging transporter
proteomic data support this assumption, as OATP1B1 is
reported as the most abundant OATP in both liver tissue
and cellular in vitro systems (23,24). However, none of the
SNPs in SLCO1B1 gene represents a complete knock-out in
repaglinide hepatic uptake; therefore, potential contribution
of other transporters (e.g., OATP1B3) cannot be ruled out.

The reduced PBPK model presented here allows also
prediction of DDI risk in different OATP1B1 genotype
groups and assessment of the interplay between hepatic up-
take and metabolism which would not be possible using a

purely empirical model. However, as some elements remain
empirical (e.g., volume of distribution), the extrapolative pow-
er is less than that of a full PBPKmodel (4,5,52). However, the
current model offers a number of advantages over the full
PBPK model. Unknown aspects of repaglinide distribution
(e.g., uptake in other tissues) do not impact the estimates of the
hepatic uptake clearance by the reduced model, as no addi-
tional predictions based on physicochemical properties are
required. Currently, in vitro data available for repaglinide are
insufficient to define with confidence uptake in any other
tissues other than the liver and the frequently applied assump-
tion that these tissues are represented by perfusion rate limited
concepts may be incorrect. These shortcomings are avoided
by using the modeling approach presented here. In addition,
optimization process is less biased compared to full PBPK
models (with typically large number of fixed parameters),
facilitating Monte Carlo simulations and power analyses.

The hybrid model also highlights the considerable impact
of CLdiff and CLmet on our ability to assess confidently
CLuptake from clinical data and provides additional under-
standing of the extensive variability in CLuptake empirical
scaling factors reported for the comparable set of drugs
(7,15). It is important to appreciate the limited power of
plasma concentration-time profiles for the parameter optimi-
zation, in particular for drugs with multiple and sequential
disposition processes, as discussed recently in more detail (26).
The analysis performed here has illustrated that multiple
solutions can describe repaglinide plasma concentration-time
profiles almost equally well, conditional on different values
used for the fixed parameters (Fig. 5). To overcome the
reliance on fixed parameters, a Bayesian framework has been
proposed where priors are provided for the parameters
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Fig. 7 (a) Predicted effect of either other CYP2C8 polymorphism or inhibition effect (decrease in CLmet) on repaglinide plasma exposure in individuals with
normal OATP1B1 activity (TT/TC for the c.521T>C polymorphism). Each boxplot represents individual AUCs of 1,000 simulated subjects for every scenario
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size and functional magnitude of the polymorphism/inhibition effect. Sample size is reported per group, assuming equal number of subjects in each group.
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(instead of using the fixed value), allowing them to be updated
with the observed clinical data, resulting in a statistical distri-
bution of the output parameters, rather than just a single
estimate. The limitation of the approach is that in some cases
appropriate statistical distribution of priors might not be
available. In addition, if clinical data are not as informative
to update model parameters then these will shrink towards
prior information (as if a fixed value was used) (26).

The uncertainties described above translate further into the
predictedmagnitude of DDI (Fig. 5b and c) andmay affect the
success of these predictions considerably, as illustrated in the
example of repaglinide metabolic DDIs. Given the uncertain-
ty in essential drug parameters CLdiff and even the widely
studied CLmet by current in vitro methodologies, it is highly
advisable to investigate a certain space of drug properties
rather than a single set of parameter values in order to obtain
a clearer understanding of the potential risk of DDI of a victim
drug in question. It is evident from Fig. 5 that under certain
conditions no DDI would have been predicted for repaglinide
metabolic interaction, while other sets of parameter values
suggest substantial sensitivities to metabolic inhibitors. For any
other drugs analogous to repaglinide, this becomes a complex,
multi-factorial problem, to be addressed within the PBPK
modeling framework.

To date, clinical studies are contradictory on the overall
effect of CYP2C8*3 polymorphism on repaglinide plasma
exposure. Recently, this genetic variant was reported to in-
crease repaglinide CYP2C8-mediated CLmet in vitro by ap-
proximately 30% (46). However, direct translation of this
finding to an in vivo situation is difficult. Using the reduced
PBPKmodel we were able to mechanistically predict minimal
impact of the CYP2C8*3 polymorphism on repaglinide plas-
ma exposure (Fig. 6a); these simulations are in agreement with
the reported clinical studies where this effect ranges from none
to a 48% decrease in AUC. However, it should be clearly
noted that our predictions with regard to the effect of
CYP2C8*3 polymorphism are conditional on the in vitro
CLmet and CLdiff values used to inform model parameters in
a similar way that their uncertainty affected the DDI assess-
ment (Fig. 5). The analysis has also illustrated that repaglinide
plasma exposure is relatively insensitive to increases in meta-
bolic activity. From a mechanistic point of view this is justifi-
able, as the overall hepatic clearance and subsequently plasma
exposure for drugs like repaglinide are resultant of the inter-
play of multiple processes. If the passive diffusion is small
relative to the CLmet (as seen here), the dominant process for
the overall clearance and plasma exposure is the hepatic
uptake and not the metabolism. This is clearly illustrated for
scenarios where CLmet is increased >10-fold, yet plasma ex-
posure is insensitive to these changes; however, repaglinide
liver exposure will be affected. When a CYP2C8 polymor-
phism or a potential DDI is decreasing repaglinide CLmet (in
particular if this change is >60%) the balance between passive

diffusion and CLmet is altered and the passive diffusion efflux
process becomes governing, leading to changes in repaglinide
plasma exposure.

In addition to the prediction of different scenarios (DDI
and genetic polymorphisms), the current work provides an
example of the application of mechanistic modeling for opti-
mal design of a clinical study for drugs with complex pharma-
cokinetics affected by multiple polymorphisms. The reduced
PBPK model allowed us to simulate the impact of the
CYP2C8*3 polymorphism on repaglinide AUC in relation
to the SLCO1B1 c.521T>C genotype, overcoming the sample
size difficulties that will be associated with such an investiga-
tion in a clinical setting. The relative effect of the CYP2C8*3
polymorphism was shown to be independent of the
OATP1B1 genotype, as the fractional AUC changes in indi-
viduals with normal and decreased OATP1B1 activity were
equivalent (Fig. 6 and Supplementary Material Figure 8). The
findings of this work have direct implications for the design of
pharmacogenetic studies. The basis of an adequate power
calculation prior to a pharmacogenetic study is an educated
guess on the magnitude of the polymorphism effect on the
observed outcome and the associated variability (53).
Repaglinide represents an example of a drug where the mag-
nitude of the functional effect of a polymorphism (e.g., in-
crease in metabolic activity) is not directly reflected in the
observed clinical output i.e., plasma exposure. In such a case,
in vitro information on the magnitude of the polymorphic
effect cannot directly inform the design of a pharmacoge-
netic study and rationalise the required study size without
the use of mechanistic modeling. Current repaglinide
PBPK model adequately captures not only the mean
repaglinide plasma exposure but also the associated pop-
ulation variability, allowing us to perform power calcula-
tions for different magnitudes of functional effect of
CYP2C8 polymorphism. These power calculations indi-
cate that large sample sizes will be needed to clinically
detect the effect of this polymorphism and minimal
changes in repaglinide plasma exposure. Additional pow-
er calculations performed for the more common scenario
where CYP2C8 metabolic clearance is decreased (addi-
tional polymorphism or inhibition) can be used to guide
future pharmacogenetic and/or DDI studies.

In conclusion, the hybrid PBPK model represents a valu-
able tool for parameter optimization and assessment of covar-
iate effects compared to the whole body PBPK model.
Limitations of parameter estimation based solely on plasma
data as a surrogate for tissue profiles are highlighted. The
mechanistic model-based approach presented here has addi-
tional advantages as it provides a framework to inform power
calculation and design of either pharmacogenetic or DDI
studies even in the first stages of drug development when the
information about the effects of a genetic variant or enzyme
inhibition in vivo are likely to be limited.
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